79 research outputs found

    Matching of analytical and numerical solutions for neutron stars of arbitrary rotation

    Full text link
    We demonstrate the results of an attempt to match the two-soliton analytical solution with the numerically produced solutions of the Einstein field equations, that describe the spacetime exterior of rotating neutron stars, for arbitrary rotation. The matching procedure is performed by equating the first four multipole moments of the analytical solution to the multipole moments of the numerical one. We then argue that in order to check the effectiveness of the matching of the analytical with the numerical solution we should compare the metric components, the radius of the innermost stable circular orbit (RISCOR_{ISCO}), the rotation frequency Ωdϕdt\Omega\equiv\frac{d\phi}{dt} and the epicyclic frequencies Ωρ,  Ωz\Omega_{\rho},\;\Omega_z. Finally we present some results of the comparison.Comment: Contribution at the 13th Conference on Recent Developments in Gravity (NEB XIII), corrected typo in M4M_4 of eq. 5 of the published versio

    Chaotic dynamics around astrophysical objects with nonisotropic stresses

    Full text link
    The existence of chaotic behavior for the geodesics of the test particles orbiting compact objects is a subject of much current research. Some years ago, Gu\'eron and Letelier [Phys. Rev. E \textbf{66}, 046611 (2002)] reported the existence of chaotic behavior for the geodesics of the test particles orbiting compact objects like black holes induced by specific values of the quadrupolar deformation of the source using as models the Erez--Rosen solution and the Kerr black hole deformed by an internal multipole term. In this work, we are interesting in the study of the dynamic behavior of geodesics around astrophysical objects with intrinsic quadrupolar deformation or nonisotropic stresses, which induces nonvanishing quadrupolar deformation for the nonrotating limit. For our purpose, we use the Tomimatsu-Sato spacetime [Phys. Rev. Lett. \textbf{29} 1344 (1972)] and its arbitrary deformed generalization obtained as the particular vacuum case of the five parametric solution of Manko et al [Phys. Rev. D 62, 044048 (2000)], characterizing the geodesic dynamics throughout the Poincar\'e sections method. In contrast to the results by Gu\'eron and Letelier we find chaotic motion for oblate deformations instead of prolate deformations. It opens the possibility that the particles forming the accretion disk around a large variety of different astrophysical bodies (nonprolate, e.g., neutron stars) could exhibit chaotic dynamics. We also conjecture that the existence of an arbitrary deformation parameter is necessary for the existence of chaotic dynamics.Comment: 7 pages, 5 figure

    Realistic Exact Solution for the Exterior Field of a Rotating Neutron Star

    Get PDF
    A new six-parametric, axisymmetric and asymptotically flat exact solution of Einstein-Maxwell field equations having reflection symmetry is presented. It has arbitrary physical parameters of mass, angular momentum, mass--quadrupole moment, current octupole moment, electric charge and magnetic dipole, so it can represent the exterior field of a rotating, deformed, magnetized and charged object; some properties of the closed-form analytic solution such as its multipolar structure, electromagnetic fields and singularities are also presented. In the vacuum case, this analytic solution is matched to some numerical interior solutions representing neutron stars, calculated by Berti & Stergioulas (Mon. Not. Roy. Astron. Soc. 350, 1416 (2004)), imposing that the multipole moments be the same. As an independent test of accuracy of the solution to describe exterior fields of neutron stars, we present an extensive comparison of the radii of innermost stable circular orbits (ISCOs) obtained from Berti & Stergioulas numerical solutions, Kerr solution (Phys. Rev. Lett. 11, 237 (1963)), Hartle & Thorne solution (Ap. J. 153, 807, (1968)), an analytic series expansion derived by Shibata & Sasaki (Phys. Rev. D. 58 104011 (1998)) and, our exact solution. We found that radii of ISCOs from our solution fits better than others with realistic numerical interior solutions.Comment: 13 pages, 13 figures, LaTeX documen

    Faithful transformation of quasi-isotropic to Weyl-Papapetrou coordinates: A prerequisite to compare metrics

    Full text link
    We demonstrate how one should transform correctly quasi-isotropic coordinates to Weyl-Papapetrou coordinates in order to compare the metric around a rotating star that has been constructed numerically in the former coordinates with an axially symmetric stationary metric that is given through an analytical form in the latter coordinates. Since a stationary metric associated with an isolated object that is built numerically partly refers to a non-vacuum solution (interior of the star) the transformation of its coordinates to Weyl-Papapetrou coordinates, which are usually used to describe vacuum axisymmetric and stationary solutions of Einstein equations, is not straightforward in the non-vacuum region. If this point is \textit{not} taken into consideration, one may end up to erroneous conclusions about how well a specific analytical metric matches the metric around the star, due to fallacious coordinate transformations.Comment: 18 pages, 2 figure

    Damping of quasi-2D internal wave attractors by rigid-wall friction

    Full text link
    The reflection of internal gravity waves at sloping boundaries leads to focusing or defocusing. In closed domains, focusing typically dominates and projects the wave energy onto 'wave attractors'. For small-amplitude internal waves, the projection of energy onto higher wave numbers by geometric focusing can be balanced by viscous dissipation at high wave numbers. Contrary to what was previously suggested, viscous dissipation in interior shear layers may not be sufficient to explain the experiments on wave attractors in the classical quasi-2D trapezoidal laboratory set-ups. Applying standard boundary layer theory, we provide an elaborate description of the viscous dissipation in the interior shear layer, as well as at the rigid boundaries. Our analysis shows that even if the thin lateral Stokes boundary layers consist of no more than 1% of the wall-to-wall distance, dissipation by lateral walls dominates at intermediate wave numbers. Our extended model for the spectrum of 3D wave attractors in equilibrium closes the gap between observations and theory by Hazewinkel et al. (2008)

    Equilibrium configurations of two charged masses in General Relativity

    Full text link
    An asymptotically flat static solution of Einstein-Maxwell equations which describes the field of two non-extreme Reissner - Nordstr\"om sources in equilibrium is presented. It is expressed in terms of physical parameters of the sources (their masses, charges and separating distance). Very simple analytical forms were found for the solution as well as for the equilibrium condition which guarantees the absence of any struts on the symmetry axis. This condition shows that the equilibrium is not possible for two black holes or for two naked singularities. However, in the case when one of the sources is a black hole and another one is a naked singularity, the equilibrium is possible at some distance separating the sources. It is interesting that for appropriately chosen parameters even a Schwarzschild black hole together with a naked singularity can be "suspended" freely in the superposition of their fields.Comment: 4 pages; accepted for publication in Phys. Rev.

    Exact solution for the simplest binary system of Kerr black holes

    Full text link
    The full metric describing two counter-rotating identical Kerr black holes separated by a massless strut is derived in the explicit analytical form. It contains three arbitrary parameters which are the Komar mass M, Komar angular momentum per unit mass a of one of the black holes (the other has the same mass and equal but opposite angular momentum) and the coordinate distance R between the centers of the horizons. In the limit of extreme black holes, the metric becomes a special member of the Kinnersly-Chitre five-parameter family of vacuum solutions generalizing the Tomimatsu-Sato delta=2 spacetime, and we present the complete set of metrical fields defining this limit.Comment: 9 pages, 1 figure, typos corrected, a footnote on p.6 extende

    Boundary layer on the surface of a neutron star

    Full text link
    In an attempt to model the accretion onto a neutron star in low-mass X-ray binaries, we present two-dimensional hydrodynamical models of the gas flow in close vicinity of the stellar surface. First we consider a gas pressure dominated case, assuming that the star is non-rotating. For the stellar mass we take M_{\rm star}=1.4 \times 10^{-2} \msun and for the gas temperature T=5×106T=5 \times 10^6 K. Our results are qualitatively different in the case of a realistic neutron star mass and a realistic gas temperature of T108T\simeq 10^8 K, when the radiation pressure dominates. We show that to get the stationary solution in a latter case, the star most probably has to rotate with the considerable velocity.Comment: 7 pages, 7 figure
    corecore